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Abstract

We consider the problem of color image quantization, or clustering of the color space. We pro-
pose a new methodology for doing this, called model-based clustering trees. This is grounded
in model-based clustering, which bases inference on finite mixture models estimated by max-
imum likelihood using the EM algorithm, and automatically chooses the number of clusters
by Bayesian model selection, approximated using BIC, the Bayesian Information Criterion.
We build a clustering tree by first clustering the first color band, then using the second color
band to cluster each of the clusters found at the first stage, and the resulting clusters are
then further subdivided in the same way using the third color band. The tree is pruned
automatically as part of the algorithm by using Bayesian model selection to choose the num-
ber of clusters at each stage. An efficient algorithm for implementing the methodology is
proposed. The method is applied to several real data sets and compared, with good results,
to an alternative method that clusters simultaneously on all bands.

KEYWORDS: Bayesian modeling; Clustering; Color-space quantization.
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1 Introduction

Clustering and segmentation in an image analysis context have a long history [23]. Objectives
include: quantization of data values for later use with a codebook in a compression context;
targeting delivery to display devices supporting small, bounded pixel data value depth; as a
preliminary to object and feature detection and analysis in images; and as a basis for other
image processing operations such as image registration and archiving.

Color quantization (see, e.g., [33]) is unsupervised classification, or clustering, of the
color space. Typically a potential 256 (for 1-byte pixel values in each color band) distinct
colors are to be mapped into a reduced number of palette colors, e.g. up to 256 [27]. Color
image quantization could be said to be brittle because the distribution of local optima in the
3-dimensional color space is expected to be broad [28].

In this work we will be concerned with 3-band color data. However our results will carry
over to multiple band data (e.g. in Earth observation), or to multi- or hyperspectral data in
any domain. Our work may similarly be relevant for aspects of image sequence and video
analysis.

A short review of software for quantization is as follows. In the image display and analysis
program xv, Bradley [3] sequentially picks colors which are as unlike as possible to all already
picked colors. RGB space is used. In ImageMagick, Cristy [8] determines a color description
tree, associates the frequency of occurrence with each node in this tree, and a quantization
error defined in RGB space. ImageMagick then prunes the tree based on these measures. An
algorithm developed by Wan et al. [35] also uses hyperboxes with hyperplane splits, based
on a sum of squares error criterion.

In this paper, we propose a new method for color image quantization, called model-based
clustering trees. This combines maximum likelihood estimation of finite mixture models with
Bayesian model selection. It operates recursively on the three color bands of the image. First
it clusters the pixels on the basis of the first band. Then, using the second color band, it
clusters each of the clusters found in the first stage. The third stage further subdivides the
resulting clusters on the basis of the third band. Bayesian model selection is used at each
stage to determine the number of clusters, so that the data are used to decide adaptively
the extent to which the tree is pruned.

The resulting method allows the number of color quantization levels to be chosen on the
basis of the data, if desired. If the number of quantization levels is predetermined, however

[24] the method can easily handle this as a special case. Also, a natural order often exists on



color band dimensions, e.g., chromaticities convey far less perceptual information than does
the luminosity (see, e.g., [36]). Such an order can be readily accommodated in our approach.
Experimental results are presented below for the cases of an order on color bands, and the
case of no such order.

We can readily accommodate noise in our image data. This is implied by image features
taken as realizations of distributional models. Explicit noise components are readily incor-
porated into our modeling, as discussed in earlier work of ours [4]. Our MR software package
[20] provides color image noise filtering, together with compression, functionality.

We can accommodate a very small number of classes (clusters or segments) for the pixels,
or a large number. A small number of classes may be needed as a preliminary to a data
interpretation, or high-level vision stage of the analysis, or to cater for 4-bit displays, in
which case optimal 16-level quantization is targeted. A large number of classes may be
needed when high fidelity to the original image is required, by close approximation to 8-bit
or greater precision of pixel data in each color band.

In Section 2 we describe the model-based clustering trees methodology. In Section 3 we
discuss aspects of algorithm design and properties. In Section 4 we show how the algorithm
performs on several real datasets, and compare it to an alternative algorithm that clusters

separately (rather than recursively) on the color bands.

2 Model-Based Clustering Trees

Our basic framework is that of model-based clustering, as described, for example, by Fraley
and Raftery [14, 15]. In this methodology, a finite mixture of normal distributions is fit to
the data by maximum likelihood estimation using the EM algorithm, the number of groups
is chosen using Bayesian model selection, and if hard clustering is desired, each datum
is assigned to its most likely group a posteriori. Model-based clustering trees produces a
clustering of multivariate data by clustering on each band or dimension recursively.

We now briefly outline finite mixture modeling, Bayesian model selection, and model-

based clustering trees.

2.1 Univariate Normal Finite Mixture Models

In the univariate normal finite mixture model, one-dimensional observations x; are assumed
to be drawn from G groups, each of which is normally distributed. The g-th group has mean

g and variance 03. Given observations x = (x1, ..., Z,), let v be an unobserved n x G cluster



assignment matrix, where v;, = 1 if z; comes from the g-th group, and 7;, = 0 otherwise.
Our goals are to determine the number of clusters G, to determine the cluster assignment of
each datum, and to estimate the parameters p, and o, of each cluster.

The probability density for this model is

G
Fil0, A) = 3 Ao fy(wil0y), (1)

g=1
where 0, = (pg,02)", fo(:|0y) is a normal density with mean j, and variance o2, § =

(61,...,0c), and A = (A, ..., Ag) is a vector of mixture probabilities such that A\, > 0 (g =
1,...,G) and Zle/\g =1.

We estimate the parameters by maximum likelihood using the EM (expectation-maximization)
algorithm [10, 19], one of the most successful methods in modern statistics. For its applica-
tion to model-based clustering, see [18, 6, 9]. This is a procedure for iteratively maximizing
likelihoods in situations where there are unobserved quantities and estimation would be sim-
ple if these were known. In the clustering case, the unobserved quantities are the cluster
assignments given by the matrix .

The EM algorithm iterates between the E step and the M step. In the E step, the
conditional expectation, 4, of v given the data and the current estimates of 6 and A is
computed, so that 4;, is the conditional probability that x; belongs to the g-th group. In
the M step, conditional maximum likelihood estimators of # and A given the current ¥ are
computed.

The point is that the E step and the M step are both simple, so that the EM algorithm
as a whole is also simple. By contrast, direct maximization of the likelihood for the mixture
model is complex in general. Although the EM algorithm has some limitations (e.g. it is
not guaranteed to converge to a global rather than a local maximum of the likelihood), it is
generally efficient and effective for Gaussian clustering problems. The EM algorithm requires
a starting point. An initial classification for each possible number of clusters may be found
by agglomerative hierarchical model-based clustering [22, 2].

This procedure is especially efficient for clustering image pixels using single color bands
or greyscale images. In general the EM algorithm requires O(n) time, where n is the number
of pixels. However, typically pixels can have one of only a limited number, #, of intensities
in each band, such as 256. If we first summarize the data by the counts of the numbers of
pixels with each intensity level, the EM algorithm becomes an O(f) algorithm rather than
an O(n) one. Since n is often on the order of 65,000 or more, and ¢ is typically 256, this

is a major speed-up and provides a compelling reason for clustering one band at a time if



this can be done without degrading performance too much. This is the motivation for the

model-based clustering trees methodology described in Section 2.3.

2.2 Choosing the Number of Clusters via Bayesian Model Selec-
tion

We use Bayesian model selection to choose the number of clusters. For review of Bayesian
model selection, see Kass and Raftery [16] and Raftery [25]. Pioneering work in this area
was due to H. Jeffreys, I.J. Good and (according to the latter) A. Turing.

We consider a range of candidate numbers of clusters, G = Gpjn, - - - , Gmax- Each possible
number of clusters, GG, implies a different statistical model for the data, Mg. The model Mg
has a vector of unknown parameters, 1/, consisting of the G means, the G variances, and the
(G—1) independently estimated mixture probabilities: (3G —1) parameters in all. Our prior
model probabilities are p(Mg) for G = G, - - - ; Gmax, Where Zgggmin p(Mg) = 1. Often
each number of clusters considered is taken to be equally likely a priori, so that p(Mg) =
1/(Gmax — Gmin + 1) for each G. The model parameters 1) also have prior distributions

p(Yg|Mg), which are typically rather diffuse and do not affect the final conclusions unduly.

The data produce posterior model probabilities, p(M¢|z), where again Y=g p(Mglz) = 1.
By Bayes’ theorem,
M M,
p(Mlz) = p(z|Mg)p(Mg) G = Guins - - - » Conae. 2)

G P(@ | Mi)p(Mr)"
In (2), p(z|Mg) is the integrated likelihood of model M, which requires integration over the

model’s parameter space, as follows:

plalMa) = [ plahtic, Ma)p(va| Mo)dve. 3)

by the law of total probability.

The integral (3) is intractable analytically and is not easy to evaluate. However, twice
the logarithm of the integrated likelihood can be approximated by the Bayesian Information
Criterion, or BIC:

2logp(z|Mg) ~ 210gp(x|@/;g,MG) — (3G —1)logn
— BIC (4)

(Schwarz 1978; Kass and Wasserman 1995; Raftery 1995). In (4),
n G
(m‘q/}G’aMG’ = HZ a:z|9

4



is the maximized likelihood. In words, BIC = 2(log maximized likelihood) + (log n)(number
of parameters). The BIC measures the balance between the improvement in the likelihood
and the number of model parameters needed to achieve that likelihood. While the absolute
value of the BIC is not informative, differences between the BIC values for two competing
models provide estimates of the evidence in the data for one model against another. The use
of the BIC in choosing clusters in a mixture or clustering model is discussed by Roeder and
Wasserman [26] and Dasgupta and Raftery [9]. Applications are in Campbell et al. [4, 5],
Mukherjee et al. [21] and in other articles.

2.3 Model-Based Clustering Trees Algorithm

For color image segmentation, we cluster the first band, then we cluster each of the resulting
clusters using the second band, and finally we subdivide the resulting clusters yet again using
the third band. This requires choosing the 3D color space and the order in which the bands
are to be clustered; these issues are discussed in Section 3.

The algorithm can be summarized as follows:

1. For the first color band, use BIC to choose the number of clusters (here we use G, = 1,
Gmax = 9). Use the EM algorithm to estimate the parameters of the mixture model,

and assign each pixel to the group to which it is most likely to belong a posteriori.

2. For each cluster identified in step 1, carry out a separate model-based cluster analy-
sis, this time using only the pixel intensities in the second color band. Each cluster

identified in step 1 is then itself subdivided into several clusters.

3. For each (sub)cluster identified in step 2, subdivide it further using the same procedure

as in step 2, but this time using only the pixel intensities in the third color band.

The univariate normal mixture model fitting was carried out using an algorithm initially
developed by Stanford [30]. In implementing the algorithm, numeric sub-segment mean
values are down-scaled by a factor of 10 (i.e., cluster labels expressed as a sequence number
1, 2, ... , and subsequently divided by 10) for level 2 sub-segments, and by a factor of 100
(i.e., cluster labels expressed as a sequence number 1, 2, ... , and subsequently divided by
100) for level 3 sub-segments. Given the linear order properties explored in the next section,
this facilitates addition of segment and sub-segment means. It is clear that this algorithm
provides an adaptive stepwise procedure for pruning a segment tree with an upper limit of

93 = 729 segments.



Timing tests were carried out in order to look at scaling with respect to number of
clusters, and image dimensions. Scaling with respect to number of clusters is approximately
linear. For 3, 9, 15, 21, 27, 33 and 39 clusters from a 768 x512 array, the compute times were,
respectively, 20, 40, 53, 69, 104, 108, 131 seconds. Scaling with input image dimensionality
was as follows, where floating point storage was used for input images, and 10 clusters were
found in each case: (300 x 300), 11 seconds; (600 x 600), 35 seconds; (900 x 900), 87

seconds. This is better than linear in this dimensionality region.

3 Algorithm Design

3.1 Algorithm Properties

In this section, we review results for:

1. Band segmentation, and spectral clustering.
2. Label monotonicity.

3. Partial order of clusters, and total order of cluster labels.

Contiguity of pixels associated with a cluster implies that segmentation rather than
clustering holds. In the spatial or image dimension space domain, our algorithm provides a
clustering solution. In color or spectral band space, our algorithm provides a segmentation
solution. It is clear that the latter allows for straightforward inducing of a total order relation
on the image pixels, which is necessary for display as a single image plane.

In the following we will discuss further properties of our algorithm related to segmentation
in the spectral domain.

To facilitate image display, we posit the following label monotonicity principle.
Label monotonicity principle:
For clusters ¢; of means m(c;), and labels I(¢c;) we require: l(c;) < l(cj) <= m(c;) < m(c;)
for all 7 and j.

The relation < is a total order on the multivariate means.

Such a monotonicity principle is desirable since the relation < can be mapped onto a

color lookup table, allowing the labels to be mapped monotonically.



The mixture modeling algorithm is a segmentation algorithm since it is one-dimensional
and we have the following exact relationship for any given spatial dimension or color band:
l(ci) < l(cj) <= m(c;) < m(c)).

Next, consider clusters defined from band or color 2, cy;, and we will write c¢y; for a cluster
defined from band 1. For given ci;, we have ¢;; = Ujcj,co; where the cardinality of band 2
cluster set, .J;, is at least 1. When | J; |= 1 we ignore any contribution by band 2, i.e., no
sub-clusters have been found.

A fortiori it holds that I(cy;) < l(cej) <= m(cai) < m(cy ) for all band 2 segments.

Similar properties hold for band 3. We have c¢i; = Ujcj,co; for a set of subclusters, J;,
and oy = Ujiegrcojr for a set of subclusters, J!, which also is at least of cardinality 1 and at
most of cardinality | coy |. Again we have a total order on all band 3 segments.

Our algorithm produces an embedded set of segments. Is there a total order on segment
means resulting from this embedded set, so that the principle of label monotonicity is re-
spected? To show that this is indeed the case, we firstly note that band 3 segments replace
a parent band 2 segment, and band 2 segments replace a parent band 1 segment.

Secondly, at band 2, given ci; = Ujcj,cp;, We can ensure that max;cy; < c¢y(i11) since by
the total order on band 2 and on band 1 segments, we have a well-defined maximum value
of ¢35, and similarly ¢;(;11) > ¢;; is next in band 1 sequence.

These two properties ensure that there results a total order of segment means. Hence it

follows that the label monotonicity principle is respected.

3.2 Unconstrained Band Ordering

In this section, we follow closely Tate [31] who considers the band ordering problem for
compression of multispectral images.

We consider the problem of clustering on one band coordinate, assuming that this band
presents good clustering properties, followed by clustering on a second band based on the
first band clustering, and so on. As expressed in the previous section, if ¢y; is the ith cluster
from the first band, then we seek clusters cy; such that ci; = Ujc o4, i.€., J; is a partition
of cluster ¢;;. Similarly we proceed to a third band, based on available results for bands 1
and 2.

The order in which we consider the bands is evidently important. Let us define goodness
of clustering as the tightness of the clusters, i.e. the minimum sum of variances of clusters
for all bands.

Clearly a result of this definition is that when we find no subclustering at bands 2 and

7



3, the corresponding subcluster variances are equal to 0, and hence the contribution to the
overall sum of variances is thereby minimized.

Finding the optimal band ordering for clustering is not difficult in the color space case,
since it involves only 6 possible alternatives. In the case of hyperspectral data, with many
dozens or hundreds of bands, the situation is more computationally demanding.

Define graph G = (V, E) such that an edge E;; has weight w;; representing the added
clustering quality attainable by clustering band 7 before band j. By design, band 7 is parti-
tioned, and the clusters of the ¢-partition are each partitioned based on band j information.
Define w;; as the improvement in the overall sum of posteriors (or sum of intra-cluster vari-
ances: the criterion used to quantify clustering quality is not important here) by taking band
1 before band j.

The problem of finding an optimal band order in the general case of many bands is
equivalent to finding an optimal traveling salesman path in the graph, G. This Hamiltonian
path problem in NP-hard and the corresponding decision problem of knowing whether we

have or do not have a Hamiltonian path in G is NP-complete.

3.3 Transformations

In this section, we investigate image transformation band ordering

RGB coordinates are converted to luminance-hue-saturation YIQ using the following

transformation.
Y 0.30 0.59 0.11 R
I |=1]1060 —028 —-032]|.|G& (5)
Q 0.21 —-0.52 0.31 B

Cheng et al. [7] present a useful overview of color space transformations (unfortunately
marred by many typographical errors including in the definition of the above transformation.)

Luminance alone provides a best monochrome approximation. The I and Q chrominance
components can be significantly limited (e.g., using decimation) without noticeable image
degradation. This transformation therefore provides for an order on the image bands. So
also does an eigen-analysis of the multiband image. Finally, we investigate also a color
enhancement procedure proposed in Toet [32]: perform sigma-clipping on each color band,

followed by color saturation:



Color space, order Number of quantization levels

RGB 9,73, 125
GBR 8, 69, 240
RBG 9, 83, 214
YIQ 9,77, 218
PC1, PC2, PC3

of RGB 9, 78, 180
RGB clipped,

saturated 9, 73, 208

Table 1: Cardinalities of embedded partitions for successive bands, 1, 2 and 3. Sail data.

R, Cl R_CQ
G |=c"Fr |GG (6)
Bl 1 2 B—CQ

where C; = max{ R,G,B }, and Cy = min{ R,G,B }.

4 Examples

Test data sets from [17] were used. These included the sail of dimensions 3, 768, 512;

tulips of dimensions 3, 767, 512; and frymire images.

4.1 Fitting Model-Based Clustering Trees

We begin by partitioning a first band, and then continuing with the partitioning of previous
band clusters. By constraining the mixture model to 9 image marginal Gaussian components,
this yields a tree of Gaussian components of, at most, 9° = 729 nodes. The BIC model
assessment criterion will tell us if we can justifiably retain a pruned version of this tree of
Gaussians.

Using the sails data, the numbers of quantization levels found for bands 1, 2 and 3
are shown in Table 1. Of note is that there is no experimental advantage in the use of
band ordering such as through use of YIQ color space, or eigen-images (principal component
images, PC1, PC2, PC3). In all cases, increased numbers of clusters entails corresponding
improvements in visual quality, and generally in global measures such as mean square error

(MSE) relative to input data. MSE values are given in the next subsection.



4.2 Comparison with ImageMagick: Separable Band Quantiza-
tion

We now turn to look, for comparison, at an alternative method based on quantization carried
out independently on the color bands, leading to a small number of quantization levels
on each. The model-based clustering trees algorithm takes a color band, and determines
the best quantization. Then in a stepwise procedure, further bands are taken and already
existing quantized bands are further quantized. Our algorithm is therefore a progressive
quantization one. In ImageMagick, by contrast, the quantization algorithm of Cristy [8]
carries out quantization directly in the color space. Such full multivariate quatization ought
to be superior but, as we will see, gives results which are less acceptable.

We consider the RGB sail example. Our algorithm produced 9 quantized levels on
the first band, 73 on the second, and 125 on the third (cf. Table 1). This result is a
progressive one, with an approximation to the original image based on 9 quantized levels,
a better approximation to the original data based on 73 quantized levels, and finally an
approximation to the original data based on 125 quantized levels.

ImageMagick’s quantize procedure was given 125 quantization levels as the target, and
produced 91, 89 and 94 quantization levels on bands 1, 2 and 3, respectively (i.e., R, G, and
B bands).

Mean square error (MSE) discrepancy between the original data and the quantized data
closely reflects the number of quantization levels used in the approximation. For band 1,
MSEs for our algorithm (9 quantization levels) and Cristy’s (91 quantization levels) were
124.95 and 99.54. For band 2, MSEs for our algorithm (73 quantization levels) and Cristy’s
(89 quantization levels) were 127.66 and 127.54. For band 3, MSEs for our algorithm (125
quantization levels) and Cristy’s (94 quantization levels) were 126.28 and 135.29. Histogram
equalization was used prior to these calculations, which was necessary for rescaling given
that our coding involved 0.1 and 0.01 color step-size increments for bands 2 and 3.

Considering the RGB tulips example, we find for our method 9, 72, and 237 progressively
quantized bands. For Cristy [8], we find 113, 133, and 133 quantized levels for the three
bands, respectively. The user parameter yielding this result was 237 quantization levels.

Qualitatively, the results are very different. Figures 1, 2 and 3 show the tulips image.

Figure 1 is a greyscale version of the 768 x 512 image.

Figure 2 results from applying our algorithm to the RGB data volume. For comparability
with the ImageMagick Cristy [8] result, we took a 9 quantization level result for the R band,

a 9 quantization level result for the G band, and an 8 quantization level result for the B

10



band. (The R band quantization levels were tested using BIC against all smaller numbers
of levels, and the G and B bands were tested for 8 and 9 levels.)

Figure 3 results from the Cristy ImageMagick quantization procedure. In the latter, 9
quantization levels were requested, yielding an image with 8, 9, and 8 quantization levels
for the three color bands. Taking the R band alone of the ImageMagick result, the good fit
to the input data (MSE 90.13 for Cristy as opposed to 128.54 for our algorithm, R band
in both cases) was explained by a somewhat crude quantization rendition of the image. A
better rendition of the image is obtained by straightforwardly converting the quantized 3D
data volume, with 8, 9, and 8 quantization levels, to greyscale. This is shown in Figure 3.

Even allowing for the degradation inherent in down-sizing and converting to greyscale
Postscript, we find, with reference to the original data in Figure 1, that the output of our
algorithm in Figure 2 is superior to the ImageMagick result in Figure 3. The ImageMagick
result is however faster than our current implementation. On a Sun Sparc 10 workstation,
it takes approximately 10 seconds for the tulips data, compared to 40 seconds for each of
the three color bands in the case of our algorithm.

Figures 4, 5 and 6 show the sails data. Considerable visual detail retained by our

algorithm (Figure 5) is lost in the ImageMagick quantization (Figure 6).

5 Discussion

We have shown how a Bayesian modeling approach, model-based clustering trees, can lead
to good results in the area of color image clustering. Formal underpinnings for such an
algorithm facilitate choice of system parameters (e.g. number of clusters) which in a general
setting would be set arbitrarily.

The fitting of a tree of Gaussian components may be of benefit in the exploration of
general parameter spaces, since we are not overly dependent on an analysis function or
kernel (here: Gaussian) of given morphology. The partial order resulting from the tree of
Gaussian components can (at least in principle) accommodate arbitrary alignments or curves
in multidimensional clusters. Djorgovski et al. [11] describe a burgeoning need for solving
such problems.

The two algorithms studied in this work — based on fitting of a tree of Gaussians, and
separable clustering — are of potential interest also for other multiple band, and indeed
general multidimensional, data sets. Future work will be on these themes.

One possible improvement on the work would be to prune the tree further using hierar-

11



Figure 1: Tulips test image, original data. The original is in color, and this is shown here
in greyscale.

chical model-based clustering [2]. Here one would start with the partition resulting from our
method, treat that as an initial partition, and perform agglomerative hierarchical clustering.
One would use the loglikelihood as the clustering criterion for choosing the groups to be
merged at each stage, and BIC as the criterion for deciding when to stop merging. This
could yield a result with fewer quantization levels, but without degrading the quality of the
quantization.

An alternative approach is to carry out model-based clustering using mixtures of mul-
tivariate normal distributions directly on the three-dimensional pixel intensities. This was
done for MRI images [12], using images with more than three bands. It is highly time-
consuming however, and in the MRI work it was feasible only because many pixels could be
excluded a priori. Our approach is much more efficient computationally and, from the ex-
amples described, captures most forms of multivariate clustering in color space very well. It

is possible to construct situations where our method would perform much less well than full
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Figure 2: Quantization using our algorithm. Number of quantization levels in R, G and B:
9, 9, 8. The original is in color, and this is shown here in greyscale.

multivariate model-based clustering, but we have not encountered such situations in prac-
tice, and they would seem rather contrived. Nevertheless, if it were possible to implement
full multivariate model-based clustering on large numbers of pixels in comparable compute

time to our method, this would seem worth doing, but this has not yet been accomplished.
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